Close Tuesday: $\quad 15.3,15.4$

Exam 2, Thursday, May $17^{\text {th }}$
13.4: Acceleration/Velocity/Dist

14.1/3/4/7: Partial derivatives

Level Curves, Domain, Partials, Tangent Plane, local max/min (2 ${ }^{\text {nd }}$ deriv. test), global max/min, applied max/min
15.1-15.4: Double integrals general regions (top/bot, left/right), reversing order, polar, center of mass

Entry Task: How do you start these? HW 15.4: Find the volume enclosed by $-x^{2}-y^{2}+z^{2}=22$ and $z=5$.

HW 15.4: Find the volume above the upper cone $z=\sqrt{x^{2}+y^{2}}$ and below

$$
x^{2}+y^{2}+z^{2}=81
$$

Volume enclosed by

$$
-x^{2}-y^{2}+z^{2}=22 \text { and } z=5
$$

The volume above the upper cone
$z=\sqrt{x^{2}+y^{2}}$ and below
$x^{2}+y^{2}+z^{2}=81$

15.3 Double Integrals over Polar Regions

 Recall:$$
\begin{aligned}
& \theta=\text { angle measured from positive } x \text {-axis } \\
& r=\text { distance from origin } \\
& x=r \cos (\theta), y=r \sin (\theta), x^{2}+y^{2}=r^{2}
\end{aligned}
$$

To set up a double integral in polar we:

1. Describing the region in polar
2. Replace " x " by " $r \cos (\theta)$ "
3. Replace " " " by " $r \sin (\theta)$ "
4. Replace "dA" by " $\mathrm{rdr} d \theta$ "

Step 1: Describing regions in polar. Examples: Describe the regions

HW 15.3: One loop of $r=6 \cos (3 \theta)$.

HW 15.4: Region in the first quadrant between the circles $x^{2}+y^{2}=16$ and $x^{2}+y^{2}=4 x$.

HW 15.4:Describe the region inside $r=1+\cos (\theta)$ and outside $r=3 \cos (\theta)$.

Step 2: Set up your integral in polar.

 Conceptual notes:
Cartesian

FIGURE 4

Polar

Examples:

1. Compute

$$
\iint_{R} \frac{\cos \left(\sqrt{x^{2}+y^{2}}\right)}{\sqrt{x^{2}+y^{2}}} d A
$$

where R is the region in the first quadrant that is between $x^{2}+y^{2}=49$, $x^{2}+y^{2}=25$ and below $y=x$.
2. Set up the two double integrals below over the entire circular disc of radius a :

3. HW 15.3:

Find the area of one closed loop of
$r=6 \cos (3 \theta)$.

4. HW 15.3:

Evaluate

$$
\iint_{R} x d A
$$

over the region in the first quadrant between the circles $x^{2}+y^{2}=16$ and $x^{2}+y^{2}=$ $4 x$ using polar

Moral:

Three ways to describe a region in a double integral:
"Top/Bottom":

$$
\iint_{R} f(x, y) d A=\int_{a}^{b} \int_{g_{1}(x)}^{g_{2}(x)} f(x, y) d y d x
$$

"Left/Right":

$$
\iint_{R} f(x, y) d A=\int_{c}^{d} \int_{h_{1}(y)}^{h_{2}(y)} f(x, y) d x d y
$$

"Inside/Outside":

$$
\iint_{R} f(x, y) d A=\int_{\alpha}^{\beta} \int_{r_{1}(\theta)}^{r_{2}(\theta)} f(r \cos (\theta), r \sin (\theta)) r d r d \theta
$$

